3x^4+9y^2/3x^2y^2

Simple and best practice solution for 3x^4+9y^2/3x^2y^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^4+9y^2/3x^2y^2 equation:


x in (-oo:+oo)

3*x^4+x^2*((9*y^2)/3)*y^2 = 0

3*x^4+3*x^2*y^4 = 0

t_1 = x^2

3*t_1^2+3*t_1^1*y^4 = 0

3*t_1^2+3*t_1*y^4 = 0

DELTA = (3*y^4)^2-(0*3*4)

DELTA = 9*y^8

9*y^8 = 0

9*y^8 = 0 // : 9

y^8 = 0

y = 0

DELTA = 0 <=> t_2 = 0

t_1 = (-(3*y^4))/(2*3) i y = 0

t_1 = (-y^4)/2 i y = 0

( t_1 = ((9*y^8)^(1/2)-(3*y^4))/(2*3) or t_1 = (-(3*y^4)-(9*y^8)^(1/2))/(2*3) ) i y > 0

( t_1 = 0 or t_1 = -y^4 ) i y > 0

y+0 > 0

y > 0

y+0 > 0 // - 0

y > 0

t_1 = (-y^4)/2

x^2-((-y^4)/2) = 0

1*x^2 = -(1/2*y^4) // : 1

x^2 = -1/2*y^4

x^2 = -1/2*y^4 // ^ 1/2

abs(x) = (-1/2)^(1/2)*y^2

x = (-1/2)^(1/2)*y^2 or x = -((-1/2)^(1/2)*y^2)

t_1 = 0

x^2+0 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

t_1 = -y^4

x^2+y^4 = 0

1*x^2 = -y^4 // : 1

x^2 = -y^4

x^2 = -y^4 // ^ 1/2

abs(x) = y^2

x = y^2 or x = -y^2

x in { (-1/2)^(1/2)*y^2, -((-1/2)^(1/2)*y^2), 0, y^2, -y^2 }

See similar equations:

| 1234/2*3-20= | | -2(7x-6)+5=-14x+17 | | 12/x-14/(x+1)=1/2 | | 12(2x-8)=4(6x+1) | | 3n/6-6/n-2 | | 27=9y-18 | | 47=3-4m | | 2w^2-11w-12=0 | | 6abc*2-10a*2bc+4ab*2c= | | 3x-26=30 | | 0.5(c+28)-c=0.6c+0.3 | | a=9.8/sin(79) | | -x-18=30 | | a=9.8/sin(79)*sin(58) | | 8t*2u*2+9tu*2v+7tuw= | | 93-7x=38x+23 | | y^2+25-14=0 | | -3x+40=2 | | 5+2x/3=-11 | | 9a*2b+ab*2-9ab= | | 150*3/50+17/2= | | x^2=41/6 | | 2.5m=5 | | 6a-10=-7 | | 4+10y=103+y | | 5(p+3)=25 | | 546*32%= | | x/7+6=-14 | | 546*15%= | | 5/6k+5/2=4-5/3k | | 18x^2+10x=4-11x | | 2y(y+25)=28 |

Equations solver categories